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Chapter 2 Input Format

2.1 Introduction

The input file to THSIM consists of a series of data records (each containing data fields like a database
record) grouped in blocks as indicated by the following headers:

*START

*NODE

*LINK

*PUMP

*dOTC

*END
The blocks can be in anv order but the data records within each block follow a specific format, as given in
the following sections. Within each block, there is no specifisd format for the input fields other than integer,
float or string. The sequence of records within each block must be maintained.
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Input Format 2-2

2.2 *START B'ock
2.2.1 Ioput Format

The *START block contains input data for overall program control as per the following format:

*START block
Rec | Fid | Format | Variable | Description Units
1 1 float t start simulation start time seconds
2 float t_fin simulation finish time seconds
3 float dt_min minimum time step seconds
4 float dt max | maximum time step seconds
5 float dt print | print time step seconds
’2_ 1 integer | max_iter | Maximum number of iterations for the pressure None
calculation in a node.
3 1 float P tol Error tolerance for pressure fraction
2 float P scale | 100% range scale for pressure error used in MPa
tolerance calculation :
4 1 float T tol Error tolerance for temperature fraction
2 float T _scale 160% range scale for temperature error used in °C
tolerance calculation
5 1 float h_tol Error tolerance for specific enthalpy fraction
2 float h scale | 100% range sczle for density error used in tolerance | kl/kg
calculation
6 1 float tho_tol Error tolerance for specific enthalpy fraction
2 float tho_scal | 100% range scale for density #rror vsed in tolerance | kg/m’
e calculation

2.22 Example
*START
0.0 1.000102 .00001 .01 .1 //t_start, t_fin, dt min, dt max, dt_print

25 /Maximur # of iterations
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Input Format

.00110.0 //Tolerance [fraction] and scale for pressure [MPa]

001 300.0 /fTolerance [fraction] ard scale for temperature [deg C]
2001 1400.0 //Tolerance [fraction] and scale for specific enthalpy [kJ/kg]
.001 1000.0 //Tolerance [fraction] and scale for density [MPa]

1.0 //Adjustable parameter
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*NODE Block

Input Format

The *NODE block contains input data for the nodes as per the following format:

*NODE block

Fid | Format | Variable Description Units
Name
1 integer | num_nodes Number of nodes = number of following None
records (i = I to num_nodes)
1 string node[i].name | Node name {(maximum of 8 characters) None
2 string ncdefil.rype Type of node: *STD? for standard node, None
‘OTANK’ for open tank (surface pressure held
at input value aud level calculation performed),
*CTANK’ for closed tank (level calcuiation
performed)
3 float nodefi].V Node volume (liquid volume if ‘OTANK”) m’
4 tloat node[i].P Node pressure {(mid level pressure if a tank) MPa
5 float node{i].T Node temperature °C
-
6 float node[i].rho Node density kg/m?
7 float nodefil].h Node specific enthalpy kI/kg
g float nodefi].x Node quality fraction
9 string node[i].indvar | Specification of independent variables for the None
node: ‘P&T’, ‘rho&h’, ‘P&n’, ‘P&rho-
10 tloat node[i]. OTANK volume if applicable, 0.0 otherwise m
V_tank
11 float node[i].area Tank cross sectional area if applicable, 0.0 m?
ciherwise
12 | float nodefj}. OTANK surface pressure boundaiy cendition if | MPa
P_surface applicable, 0.0 otherwise
12 integer | nodefi].htcid [ ID number for the input record for the heat None

transfer coefficient correlation, 0 otherwise
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Input Format 2-5
13 float node[i].heat Net fixed heat generation rate / surface heat I Watts / s
transfer rate, 0.0 otherwise
2.3.2 Example
*NODE
3
Nodel STD 1.0 10.0 300.0 250 2900.0 0.0 rho&h 0.0 0.0 00 0.0
Node2 STD 1.0 10.0 3000 25.0 2900.0 0.0 tho&h 0.0 0.0 0.0 0.0
Node3 STD 1.0 10.0 300.0 25.0 2900.0 0.0 rho&h 0.0 0.0 .0 0.0
2.4  *LINK Block
24.1 Input Format
The *LINK block contains input data for the links as per the following format:
*L.INK block
Rec | Fild | Fermai | Variable Description Units
Names
1 1 integer | num_links Number of links = number of following Noae
records (j = 1 to num_links)
j 1 string link[j].name | Link name {maximum of 8 characters) None
2 string Iink[j].type Type of link: ‘STD’ for standacd link None
3 string link[j].up_node | Name of upstream node None
4 string link[j}]. Name of downstream node None
down_node
5 float link{j].A Link cross sectional area m’
6 float link[j].D Link hydraulic diameter m
7 float link[j].L Link length m
8 float link[j]-k Link resistance coefficient
9 float link[j].del _elev | Link elevation change (from inlet to outlet) m
10 | float link{j]l.W Link flow kg/s
11 float link[j].up level | Upstream Tank connection level if applicable, | m
0.0 otherwise
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Input Format 2-6
12 float link{j]. Downstream Tank connection level if m
down_level applicable, 0.0 otherwise
13 integer | link[j].pumpid | ID number for the input record for the pump None
specification if applicable, 0 otherwise
14 integer | link[j].valveid [ ID number for the input record for the vaive None
specification if applicable, 0 otherwise
242 Example
*LINK
2

Linkl STD Nodel Node2 0.1 0.01 10.
Link2 STD Node2 Node3 .1 9.31 10.

2.5

251

*PUMP Block

Input Format

100 0.0 6.0 0 O
1.0 00 00 ¢ O

0.5 0.C
0.5 0.0

The *PUMP contains input daia for the pumps referenced in the link input (ficld 13} as per the follewing

format:
*PUMP block
Rec | FId | Format | Variable Description Units
Name
1 i integer | num_pumps Number of pumps in the following records (k| None
=1 to num_pumps)
k I integer | pumplk].id Sequential ID number for the pump = record None
number. Should correspond to the ID number
used in field 13 of the link containing the
pump.
2 string pump(k].type | Type of pump: ‘STD’ for standard link None
3 float pump{k].h_ref | head at reference flow metres
4 float pump[k].Q ref | reference volumetric flow m’/s
5 float pumplk].a head /h_ref=Q/Q ref(1-aQ)* s/m®
6 float pump(k].b None
2.52 Example

DATHSIM\Pdot(\2node\Uscrman wp8  January |8, 1995 14:38



Input Formai

2-7

*PUMP
1

1- STD 200.6 1000 0.0 0.0

2.6

2.6.1

*HTC Block

Input Format

The *HTC contains input data for the heat transfer coefficient referenced in the node input (field 12) as per
the following format:

*HTC block
Rec | Fld | Format | Variable Description Units
Name
1 1 integer | nura_htcs Number of heat transfer coefficients in the None
following records (m = 1 to num_htcs)
m 1 integer | htc[m].id Sequential ID number for the hre. Shouid None
correspond to the ID number used in field 13
of the node containing the htc.
2 string hte[m].type Type of htc: None
“FIXED’ for a constant htc
‘DB’ for standard Dittus Boelter correlation
3 float htc[m].h Fixed value of h if ‘FIXED’ type is specified Watts/
or 0.0 otherwise m* °K
4 float htcfm]. Unused
5 float htc[m]. unused
6 float htc[m]. unused
2.6.2 Exainple
*HTC
1
1 FIXED 200.0
2.7 *END Block
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2.7.1 Input format

This block header specifies the end of the input file. The user is free to place notes after this line if so
desired. There are no input records associated with this block.

2.7.2 Example

*END
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Input Format 2-9
2.8 Sample Input Files

2.8.1 Testl.inp

THSIM.C input file: To calculate properties of a node

*START

0.0 -1.0 0.00001 1.0 10.0 //t_start, t_fin, dt_min, dt_max, dt_print

25 //Maximum # of iterations

.001 10.0 //Tolerance {fractiorn] and scale for pressure [MPa]

.001 300.0 //Tolerance [fraction] and scale for temperature [deg C]

.001 1400.0 //Tolerance [fraction] and scale for specific enthalpy [kJ/kg]
.001 1000.0 //Tolerance [fraction] and scale for density [MPa]

.001 100.0 //Tolerance {[fraction] and scale for flow [kg/s]

1.0 //Adjustable parameter

*NODE

3

Nodel STD 1.0 10.0 300.0 770.0 1200.0 0.0 rhogh 0.0 0.0 0.00 0.0
Node2 STD 1.0 10.0 300.0 700.0 1400.0 0.0 . P&T 0.¢ 0.0 0.00 0.0
Node3 STD 1.0 10.0 300.0 770.0 1500.0 0.0 F&h G.0 0.0 0.0 0 0.0
*END

2.8.2 Test2.inp

THSIM.C input file: To simulate a simple node-link case

*START

0.0 10.0 0.00001 1.0 0.1 //t_start, t_fin, dt_min, dt_max, dt_print

25 //Maximum # of iterations

.001 10.0 //Tolerance [fraction] and scale for pressure [MPa]

.001 300.0 //Tolerance [fraction] and scale for temperature [deg C]

.001 1400.0 //Tolerance [fraction] and scale for specific enthalpy [kJ/kg]
.001 1000.0 //Tuwlerance {fraction] and scale for density [MPa]

.001 100.0 //Tolerance [fraction] and scale for flow [kg/s]

1.0 //Adjustable parameter

*NODE

2

Nodel ST 1.0 10.0 300.0 S500.0 1451.0 0.0 P&h 0.0 0.0 0.0 0O 0.0
Node2 STD 1.0 5.0 300.0 100.0 1500.0 0.C P&h 6.0 0.0 0.0 0O 0.0
*LINK

1

Linkl STD Nodel Node2 (.01 0.1 1. 1.5 0.9 0.0 0.0 0.0 0 0
*END
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Input Format 2-10

2.8.3 Test3.inp

THSIM.C input file: To simulate a simple node-link case

*START

0.0 10.0 .00001 1. 0.1 //t_start, t_fin, dt_min, dt_max, dt_print
25 //Maximum # of iterations

.001 10.0 //Tolerance [fraction] and scale for pressure [MPa]

.001 30C.0 //Tolerance [fraction] and scale for temperature [dea C]

.001 1400.0 //Tolerance [fraction] and scale for specific enthalpy [kZ/kg]
.001 1000.0 //Tolerance [fraction] and scale for density [MPa]

.001 100.0 //Tolerance [fraction] and scale for flow [kg/s]

1.0 //Bdjustable parameter

*NODE

3

Nodel STD 1.0 10.0 300.C 500.0 1451.0 0.9 P&h 0.0 0.0 ¢.0 0 0.9
Node2 STD 1.0 5.0 200.0 100.0 1500.0 0.0 P&h 0.0 0.0 0.0 0 0.0
Node3d STD 1.0 3.0 3G0.0 100.0 1500.0 0.0 P&h 0.0 0.0 0.0 0 0.0
*LINK

2

Linkl STD Nodel Nodez (.01 0.1 1. 1.5 0.0 0.0 0.0 0.0 0 0
Link2 STD Node2 Node3 0.01 0.1 1. 1.5 0.0 0.0 0.0 0.0 0 0

*END

284 Testd.inp

THSIM.C input file: To simulate a simple 2 interconnacted closed tank case

*START

0.0 1C¢0.0001 0.0G001 1.0 10.0 //t_start, t_fin, dt_min, dt_max, dt_print
25 //Maximum # of iterations

.001 1C.0 //Tolerance [fraction] and scale for pressure [MPa])

.001 300.0 //Tolerance [fraction] and scale for temperature [deg C]

.001 1400.0 //Tolerance (fracticn] and scale for specific enthalpy [(kJ/kg]
.001 1000.0 //Tolerance [fraction] and scale for density [kg/m"*3]

.061 100.0 //Tolerance [fraction) and scale for flow [kg/s]

1.0 //Adjustable parameter

*NODE

2

Nodel OTANK 1.0 0.2 95.0 800.0 200.0 0.0 P&T
Node2 OTANK 0.1 0.2 85.0 800.0 200.0 0.0 P&T

(N
oo
oo
(R

oo
.
oo
oo
oo
co

*LINK
1
Linkl STD Nodel Node2 0.01 0.1 10.0 1.5 0.0 0.0 0.0 0.0 0 0

*END
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The analytical investigation is primarily concerned with incorporating the equation

of state within the describing matrix equation for the system to allow the extraction of the

eigenvalues which characterize the system. First, we lock at the distributed form of the

governing equations.

THE DISTRIBUTED FORM

From Equation 10:

at

=B

we define an eigenvector, X;, which satisfies

(A-\DX,=0,i=1,..,N

where N = rank of A.

Further, we define the modal matrix, M:

Thus

Hence

AM=M-A whereA=[ Y, 0 ]

0

M-t AM = A = Diagonal

Multiplying Equation 10 thru by M -1 we get:

(10)

{63)

(64)

(65)

(66}

= i :
\-‘_J'-‘:jc' L KXY

gﬂ'm,i’;\_ ;.:

Having derived the-desired rate forms for~the equation of state, we pr d
m‘h\ \\d : ) V\J .(:‘_‘_\_ ‘MJ "-‘-r#
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, Ju du
M= 4+MlA—=M!B. (9]
at az

Since M—-1A = A M-1 (from Equation 66) and if we define:

¢=M-1U (68)
C=M-1B,
we get the canonical form:
ab P
— +A—=C. (69)
at az
This is a set of N independent equations with solution
D.(t—zH.)
o =00e ' 1, (70)

where ©i{0) and D; are determined form the initial and btoundary conditions. Thus, the
eigenvalues of Equation 69 are the velocity characteristics of the original equation set
(Fquation 10). If the set of equations chosen is the basic sef of mass, momentum and energy

equations (Equations 7-9), we find that

veo an
A=|0v0O]|,
00v
which give the eigenvalues:
Ai={v,v,v}. (72)

Thus, the basic continuity equations capture the bulk movement of fluid only.
‘For compressible flow, the classical way to capture more information is to apply the
ecuation of state,
P = ofp,s), where s = entropy,

to the energy continuity equation assuming isentropic flow, ds = (dQ/T) = 0, to give:

aP av ar
‘—'+pC,2—+V"""=0, (73)
dat Z az

where ¢ = speed of sound = V(3P/3p),. This replaces the energy equation to give
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9p
dz
v 0 o
P P v 7 (74)
[,,J, voup| T - {Epl.
P 2 az 0
pc- 0 v P
az
The eigenvalues are now:
={v,v+c,v—oc} 5

This form captures the bu'lk velocity and the acoustic wave propogation. However, we had to
assume isentropic flow and the derivation is quite obtuse. A more direct method (ref: Hinds

1981) is te recast the 3P/3z term of the moinentum equation. Since:

P =nu(e,p) {16)
and
aP
dP = —de+ —dp i
de dx Q
then
aP aP Y a Py 9
SCER
B e/a a2

Substituting into the mementum equation, the A matrix becomes

v e 0
P
1 oP 1 4P
A=]—-— v __,UZ[V (79
p 3p p dp e
0 o v

whose eigenvalues are;
i:[v v + (aP) -V aP , (80}

Again, this captures the bulk and acoustic velocities. This method is more straightforward
and intuitive and correctly shows that the primary influence of the pressure on the system is

via the momentum equation.

[t should be no surprise, then, that we arrive at the same conclusion by considering

the rate form as previously developed:

P 3 de
T oe 2,62 81)
dt 1 oa 24



Input Format 2-9
2.8 Eample Input Files

2.8.1 Testl.inp

THSIM.C input file: To calculate properties of a node

*START

0.0 -1.0 0.00001 1.0 10.0 //t_start, t_fin, dt min, dt max, dt_print

25 //Maximum # of iterations

.001 10.0 //Tolerance [fraction] and scale for pressure [MPal

.001 300.0 //Tolerarce [fraction] and scale for temperature {deg C]

.001 1400.0 //Tolerance [fraction] and scale for specific enthalpy [kJ/kg]
.001 1000.0 //Tolerarnczs [fraction] and scale for density [MPa]

.001 1G0.0 //Tolerance [fraction] and scale for flow [kg/s]

1.0 //Adjustable parameter

*NODE

3

Nodel 3TD 1.0 10.0 300.0 770.0 120C.0 0.0 rhogh 0.0 0.0 0.0 0 0.0
Node2 STD 1.0 10.0 30G.0 700.0 1400.0 0.0 P&T 0.¢c 0.0 ©6.00 0.0
Node3 STD 1.0 10.0 300.0 770.0 1500.0 0.0 #&h 0.0 0.0 0.00 0.0
*END

282 Test2inp

THSIM.C input file:

//Adjustable parameter

*START

0.0 10.0 0.00001 1.0 0.1
25 //Maximum #
.001 10.0 //Tolerance
.001 300.0 //Tolerance
.001 14900.¢ //Tolerance
.001 1000.0 //Tolerance
.001 100.0 //Tolerance
1.0

*NCDE

2

Nodel STD 1.0 10.0 300.0 500.0 1451.0

Node2 STD 1.0 5.0 300.0 100.0 1500.0 0.0

*LINK
1
Linkl

*END

To simulate a simple node-link case

/rt_start, t_fin, dt min, dt_max, dt_print
of iterations

[fraction]
[fraction]
[fraction]
[fraction]
[fraction]

STD Nodel Node2 0.01 0.1

and
and
and
and
and

1.

0.0

scale
scale
scale
scale
scale

1.5 0.

for
for
for
for
for

P&h
Ps&h

0

pressure {MPa]
temperature [deg C]
specific enthalpy [kJ/kg]
density [MPa]

flow [kg/s]

oo
[ev Rl pw
oo
o O
oo
[N
o O

0.0 0.0 0.0 0 0
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[Note: the choice of e vs b is arbitrary, as long as consistency is maintained and the G
functions appropriately redefined].

The full equation set is now:

ap.
1 1 (&
v P 0 0 [ ]
P 1 v ¢
0 v o - F/
I = pf |1 = pr _ (&2)
e 0o o v« of |%® o c;
a
Gv Gp Gy 0 | 2 g
] J Jep
| 8z |

The eigenvalues are:

A ={0v+ VG, v- VG, } (83)

aP
o/,

Again, the bulk and acoustic velocities have been picked up. The advantage of the

where

rate equation approach is that the effect of pressure is kept separate and the form permits the
explicit tracking of pressure on the same level as mass, momentum and energy. This would
be of utility in transient fluid simulations where the choice of numerical time step could be
limited by pressure phenomena. Having the rate immediately available is an asset,
computationally. This will be discussed in detail later, but it is worth noting here because it
is expedient to have the system equations case in one form that captures the system esscnce
analytically and is the appropriate form for numerical computation. Eigenvalues can then be
calculated as a matter of course in the numerical simulation and used to help the numerical
simulation in a dynamic manner (selecting time steps, number of nodes, etc.) as well as an
intuition generator.

We move on to the lumped form of the equations since this is of more interest to

system modelling.
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THE LUMPED FORM
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To illustrate the rate form of the equation of state for lumped or network type

systems, consider a two node, one link system as per Figure 11. The continuity equations for

this simple system are:
Mass
M oM
1 = -W, _2 =W
ot at
Energy
aHl 6H2
—_— = —(HlfMl) w,, —= (HllMl)W, forW >0
at at -
‘Hl aH2
_a.t— = —-(H,[Mz)w, . E- = (H2/M2)W, forW<0.
Momentum
av A
—_— - - P, - klW[W),
ralaly ®, kiw[w)
State
P =n (Hi,Mi,V), i=1,2
or
c‘:lMi aHi av
F.—+F,— +F, —
aPi B 1i at 2i at 3
at F‘hM .+ Fsi MLl
, aMi , &‘Hi ‘Ni
= Gli -I + G2i -—,assuming — =0
In matrix form:
ay
— =AU+ B,
at

where

(84)

(85)

(86)

(87)

(88)

(89)
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I =

L2

The best specific form for the system matrix, A is not immediately obvious because the
governing equations are nonl'méar. The particular linear form chosen will generate its own
set of eigenvalues. The "best” linearization, then, is loosely defined as that set which captures
the major characteristics of the system in a robust and tractable manner.

Intuition and experience suggest that the flow is the major character in T/H systems.
[nspection of Equations 84-38 shows that flow, W, appears explicitly in the continuity
equations and implicitly in the pressure equation.

Eliminating aM/3t and dH/st from the pressure equation gives:

P, G, H
. . 90)
—-+a.w J_r( A )w. ¢
at 1i M,
Thus the equation set is:
]l oo o ~1 0o 0o 07 m]
1 1
0 0 o —H /M, 0 0
q , H
, 0 0 G GmHl) 00 0 l
P, 0 —Gy M, Py
W = A/L ~ KIW] 0o 0 —aAL|l [W (91)
. 0 o 1 ¢ o
M, M,
. 0 o H /M, 00 0
H , H
2 .G H, 2
s 00 0 G+ ) 0 0 0 p
SEI M IS

The corresponding eigenvalues are:
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5

o
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A = [0,0,0,0,0 (92)

KW KW\ A/ . .
KL (Y A (G
2 L {1 12

H G, AIGZZ)}
- +

M, M,

Thus, the system will oscillate if the term under the square root sign is imaginary. The high
ineidence of "zero" roots and the "zero" columns suggests that some equations are superfluous,
Inspections shows that the mass and enthalpy equations could be dropped. This resultsina

considerably reduced set:

. H

‘ <
P 0 -G, + G, M—) 0 p
1 1 1
W = /L - Kiw| —A/L w
P H P
o . . 1 2
- 0 l{(}12 + Gr22 '1\'4—') 0
1 J
L
:
0 -C, 0 P,
= |lan -xwt -an| |w| . ©3)
I ¢ C, 0 P,
The eigenvalues for this set are:
Ai = {0, . {94)

KW KIW])2A
- — % — | = —(C, +C
2 (2 L,(l ?

Thus, the main system characteristics are picked up as before. This, of course, is the classic
spring-mass case, as can be seen by substituting the pressure equations inte the momentum

equations to give:

W

~

at(..

= — %(Cl+c2)w_xlw|%‘:’._ (95)
The conclusion that the flow and pressure equations are the key determinators of system
behaviour agress well with the findings of Bond graph theory (Paynter 1260). The results
also indicate that the full Jacobi expansion of Porsching {(1971) is perhaps not necessary since

the mass and energy equations affect the dynamics only through the state equation.
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A COMPARISON OF THE RATE FORM OF THE EQUATION OF STATE

TO THE JACOBIAN FORM

by
Wm. J. Garland
Department of Engineering Physics
McMaster University
Hamilton, Ontario

Canads L8S 4M1

ABSTRACT

Porsching's soluticn algorithm for the simulztion of thermalhydraulic systems is com-
pared to a new method based on the rate form of the equation of state. Both algorithms are
developed and discussed. A direct comparison is made for a simple 2 node-1 link case to
illustrate and numerically test the ideas presented.

It i1s shown that the final algorithms of the two methods are identical and that the rate
method is more intuitive, easy to implemeni and permits eigenvalue extraction. The
modelling of the nonlinear damping term was found to be important when large time steps

were taken.

Presented at the 13th Symposium on Simulation of Reactor Dynamics and Plant Control, held

at Chalk River Nuclear Laboratories, Chalk River, Ontario, April 27-28, 1987,

WGJ-21a



INTRODUCTION

One of the more successful algorithms for thermalhydraulic simulation is based on
the work of Porsching (PO 69, 71). This algorithm, involving the Jacobi (or derivative of the
system state matrix), is used originally in FLASH-4 (PO 69 )}, and subsequently SOPRT (CH
77 ). The strength of Porsching’s approach lies in the recognition of flow as the most
important dependent parameter and, hence, its fully implicit treatment of flow. This leads to
exccllent numerically stability, consistency and converge. Further, the Jacobian permits a
generalized approach to the linearization of nonlinear systems. This allows the development
of & system state matrix which contains all the system dynamics in terms of the dependeat
parameters of mass, energy and flow. Back substitution finally gives a matrix rate equation
in terms of the system flow (the unknown} and the svstemn derivatives. While this approach is
certainly a pro.v—en and successful one, it has some disadvantages. First, as will be shown
later, the matrix rate equation te be solved is not in a characteristic or eigenvalue form.
Hence, it is not directly possible to extract the system eigenvalues and thus determine the
stability of a state without performing a costly time solution. Secondly, the matrix rate
equation involving the Jacobi is as complicated as it is general. The resulting expressions are
somewhat obtuse and it is difficult to obtain an intuitive feel for the system. This complexity
also hinders implementation in a simulation code and makes error tracking a tedious process.

Recently (GAB€a, GA86b, SO85), work has been presented on the use of the rate form
of the equation of state. These works showed that by casting the equation of state in the form
cf a rate equation rather than the normal algebraic form, the system state matrix, can be
more logically formed of the normal conservation rate equations for mass, énergy and
momentum plus the pressure rate equation. This forms the four cornerstone equations in
thermalhydraulic systems analysis (Figure 1), It was found (GAB6a) that the mass and
energy equations did not contribute to the eigenvalues of the system for the simple cases
studied. This agrees with the intuitive analogy of springs and masses, Further, numerical

implementation prove to be very successful, leading to roughly a factor of 10 improvement
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over the algebraic form of the equation of state, largely due to the iterative nature of the
algebraic form. Incorporating the implicit pressure dependency in the numerical method also
drastically improved the numerical stability.

Since Porsching’s method also carried the pressure dependency implicitly (via the
Jacobi), the question arises as to how the Rate Form compares to Po;sching's method
Specifically, is the pressure treatment of the two methods different? If so, what are the
advantages and disadvantages of each? How do the two comparza in terms of robustness, ease
of implementation, clarity, stébiiity, ete?

Teo investigate these questions, the following two sections are devoted to concise but
explanatory derivations of Porsching’s method and the Rate Form. Subsequently, a numerical

test is performed on a simple system to i'lustrate the similarities 2nd differences.

DERIVATICON OF PORSCHING'S FORM
Following Porsching (PO71), the thermalhydraulic system equations can be written

in node-link form (see Figure 2):

Momentum:
Wy = fic (¢, Py, Pj, Wi ; {1
Enthalpy:
H H
I.-Ii_—.. z FV‘NV— Z M_va_*_Qi; {2)
vET. v veEl v '
1 1
Mass:
M — . (3)
M{ - z Wv_ z wv !
veT, vEl
I 1
where

W = mass flow rate;

P = pressure;



o1 M = mass;

» H == total enthalpy;

f = some function;
Q = heat source;
t = time;
T; = terminating node for link k;
I; = initiating node for link k;

subscripts;
ij = node indices;
k = link index;
v = summation index; .

superseript
* = gfat

o These equations can be written in matrix form:
%, .
- } y = F{t,y}, (4)

where y is the column vector:

y =] (5)

- -
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for the case of K links and N nodes.
An implicit solution is sought for its stability advantages over explicit methods. First,

we expand F via the Taylor series:

aF{t,
F(tn+l.yn+l) = F(tn .yﬂ) + At [ _(._Y.).

a“
+ ity 3_{] + 0(at) (6)
ay kg at

3

where the superseript, n, denotes some reference at iteration n and n +1 denotes the time of
iteration n+ 1. The time difference At is simply t"*!—t" It is assumed that F contains no
explicit time dependence (i.e. terms such as at? er bt, where a and b are constants). Rather,

the time dependency in F is through the implicit dependence of mass, energy and flow on

time. Thatis:
Fit,y) = F(y(t). N
Thus, in equation 6,
aF
—ty; =0
n
the implicit form for equation 4 is: £
n+1l n
y -y +1 _n+l &
=Ft"" y" .
At y
Substituting in the expansion of equation 6:
y = Fit", y" + Atd ).f, (9)
where the Jacobi is:
™~ 1
nooh
¥y W
,o|m = w
¥ W ‘
Rearranging equation 9: )
. yn +1 _ yn
y=[—atJ] R, y™ = T an

or



y“"’l =y "+ Al - AtJ]™! Fit", y" (12)

or

Ay =y"*! _y" = AHI - AtI)TT R, YY) (13)
Equations 12 and 13 are the general forms for the implicit method. Note that the function, F,

is general. it is only required that it be differentiable. In practice, it is required that F be
smooth so that there are no discontinuities in J. Discoatinuities tend to play havoc on the
nuinerical stability of simulations. For this reason, the steam tables employed in the
simulation must have continuous derivatives (see also GA 86¢).

The Jacobi, J, is of size X + 2N by K + 2N. For practical simulations (50 or mere
nodes), this gives rather large matrices to invert. To reduce the cost of inversion, Porsching
utilized the fact that flow is the major parameter and eliminated M?*! and H®*! from the
matrix equation 12 (or 13) by backsubstituting, leaving a matrix equation implicit in W, but
not in M and H{. To illustrate, consider a two node, one link case dfigure 3). The governing

equations are:

Mass:
% = _W ihfz =W. (14)
at ' 3t
Energy:
aHl aH2
= - —H/M)OW , ol H/M)OW , for W>0,
(15
SHl 8[‘[2
? = _(1{2/M2)W , ? = m{Mz)w ' for W<0.
Momentum:
W A
R- = E(Pl—Pz)—K[W|W ) (16)
State:
P.=n(, M, V), i=12 a7

where V = volume.



The Jacobi for this case is:

Thus, the matrix equation to be solved is:

[ — A P, A P, A 9P, A P,
L aHl L aH, L a N L 6M2
W le
-H /M - 0 + — 0
' Ml Mf
w HIW
+H /M + — 0 —— 0
1™ . M1 Mi‘z
-1 0 0 0 0
+1 0 0 0 0
When flow reverses, the source node is 2 rather than 1, and the Jacobi becomes:
—2K[W]| o1 ""'TE E_ _a_2
L aHl L ¢ 1 an L L a 2
H/M 0 i 0 i
R M )
v 2 M‘Z M2
+H/M 0 W 0 il
2 T2
M2 M2
-1 0 0 0 0
L+ 0 0 0 0

[I - Atd] Ay = AtF(t7, y™,

where {I — AtJ]is given by:

(18)

(19)

(13)



A 6Pl A aP
1+2AtK —— — At — — At
Wi L aHl L aH2
w
HIIMl At 1+1\_d-;ﬁt 0
w
—HllMlAt —ﬁ:At 1
(+ DAL 0 0
L (— 1At 0 0
and F is;
-%;’ P WIwW
L\P1—~ 2)—1'([ |
*H1’M1W
+HIIM1W
-W
+W

L

(20!

2n

for the case where W> (. Since the same arguments apply for the case where W <0, further

discussion wili confine itself to the case where W= (.

Multiply through in equation 13, using equations 20 and 21, noting that:

we find;

-
AWl

AH,

AH,

aM,

AM

2

.

(22)
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B
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oP A P aP

A %y 2 A 1
(1428t KIWDAW — — —AtAH + — —= AtAH, — — —=AtAM
L oH, 1L oH, 2 L M, 1
A 9P A |
+ = 2 atam = At[—(P -P )—KlWlWI, (23a)
L 6M2 2 L 1 2
AWH! At+(1 + Xv—At)AH A———tHIWAMl = At.f H—lw) (23b)
1— - - ’
M, M, M2 \ "M,
AWH AH AtH WAM, AtH W
AW AL+ AH, f = (23¢)
M, M, M2 M,
(23d)
AW At +AM1 = WAL,
and
(23e)
AW At +AM, = WAL.
Thus, from equations 23d and 23e:
AM; = (W + AW)AL (242)
AMy = (W + AW) At (24b)
At H W/M, — At AW H /M, + At H W AM /AN
AH, =- :
1 1 +W/M, At
Hl . . ] {24¢)
= —At -M—(W + AW) aftersimplification.
1
and
H
— oae L (24d)
&H, = AtM (W+AaW) .

1
Note that mass and enthalpy®’ Sonserved.

We note also that the expressions for AM and AH are similar to what you wouid

obtain by the straightforward application of implicit forward differencing of the orginal

equations 14 and 15, i.e:
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. M“+I_M“ n+1_Mn
)3 1 1 = _wn+l . Mz_z. - +w"+"
At at (25)
= n+1 n n+1 n+l n n+1
u = ___H‘ wn+! Hz —H — H, n+1
At MT-!—I ! At MIIIH-‘

The only difference between equations 24 and 25 is the treatment of the H/M factor.
To arrive at 24c and d, the mass equations (24a and b) were used and indeed, implicit treat-
ment of M and H was used. The result (24a to d) appears explicit in M and H when compared
to equation 25. This does Qt mean that the Jacobi form leads to a semi-implicit msthod
(implicit in flow, explicit in mass and enthalpy). It means that the implicit contributions
cancel out. (Note, however, it can be shown that for the generzl case, Porsching's method is
fully implicit in its treatment of the mass equation but not for the enthalpy equation.) Thus
we conclude that there is little merit in carrying the mass and enthalpy equations in implicit
form. This agrees with earlier cbservations (GA 86z) that the eigenvalues of a thermal-
) hydraalic system are associated with the flow and pressure equations, not with the mass and
energy equations.
To finish off the derivation of Porsching’s approach, we use equations 24a to d in

equation 23a to give:

H, /P, aP P aP
A 2 1 y
[1+2At.K|W|+EAt2[——1(—-1—+—)+( + ‘)HAW

M \gH = aH, aM, M,
H ,aP, 4P aP. P \1;
A A 1 2
.—_At{—(P -P)—K|w_|w_m—-w[—‘(-——+—3)+(—1+——)“ (26)
L 1 2 L M \eH = aH, M, M,
Setting:
H oP oP
C,= 1,1 ‘ (27)
(OH, M
and
S Rt Bk (28)
2 -
M, aH, oM,

we have
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A
{1 +2AL KW + i‘-./.u."’(cl +C2)}AW

= At{ %(Pl—Pz)-KIWiW—At% W(Cl+cz)} (29!

Of course, the general case of N nodes and K links would follow the same substitution route

with greatiy increased complexity (see PC71). It is not evident from Porsching's general

expressions that the resulting flow equations (equation 26 for the simple case of Z nodes and 1

link) are more dependent on pressure and its derivatives (with respect to mass and energy)

than it is on the mass and tlr;e enthalpy theinselves. This observation, cnce pointed out, is

obvious and undeniable. Yet, no existing thermalhydraulic code for system simulation takes
full advantage of this observation.

Does a formulation which ¢ontains the appropriate implicit treatment without the

large overhead of the general perturbation zpproach of Porsching's inethod? A clue exists in

equation 17:

P=aMHV) L an
This can be rewritten:
ar oP
dP = £ dM + dH + — dV. 30)
M a4 v

The form of equation 30 suggests that equation (26) contains some version of the total
pressure derivative. Indeed we shall see in the next section that the rate form of the equation

of state yields the same expression as Porsching’s method, without the large overhead.

DEFMY ON OF THE RATE FORM OF THE EQUATION OF STATE (from GA86a)

The determiingtion of pressure from known values of other thermodynamic properties

is not direct since interpola and iteration is required because the independent (known)
parameters are temperature, T, and pressure, P. Unfortunately, T and P are rarely the
independent parameters in system dynamics since numerical solution of the conservation

equations yield mass and energy as a function of time. Henbds, from the point of view of the

‘ :J)Q—‘gm 12 -1 Sallote ).
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\ Fz(P)
Cr2 {P,x) =

B+ A =-x)FP)

(46)

v —~v
g {

dh dhr dvg dv

[ (vg—vf.)-- xﬁ + (1 —-x)—

(hg— h r)
The F functions are smooth, slo varying functions of pressure provided good curve
fits are used. The latest steam tables (HA84) were used to fit saturated properties to less than

1/4% accuracy using low order polynomials and expontentials {GAR6¢c). Considerable effort

was spent on obtaining accuracy and continuouc derivatives oMe full pressure range. The

fact that good fits are available means that the F furctions are we!l békaved which in turn

makes the rate form of the equation of state extremely well behaved, as shown

r——

functions are also well behaved for the same reasons.

_—_——___-_~————-._
In general, the equation of state can be writtenin rate form for all sitvations {GA86a).

\We adopt the general form:

dT dT

dM dH dv v 1

F —+F. —+F, —+MF —+M F_—

dP " ldt 2 dg 3 dt v 6 dt 177 gt
dt M F, +MF,

dT dT 4T)
dp dh v 1 (

=G, — —+G, — +G, —
G n TG tEhR 4 gt

The expressions for the F and G functions are summarized as in GA86a. These expressions
cover the full range from subcooled liquid to superheated steam.

Thus, in addition to the system conservation equations 14 to 16, we have two pressure

rate equations:

aM, aH
aP Fung *Fe®y aM, aH, (48)
% M FaMF. nx Sy
I 14 1215
aM, oH,
Foy = +Fy = aM aH
#, " zZ g % 2 (49)
— = G, —+G,_, —
at M F +M_F 2 g Z g
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':‘] Substituting in equations 4& and 49 for dM/dt and dH/dt we have:
aP H
. WY PO | - (50)
aP H
2 _ ‘4o L (s1)
> +(G2i +G,, M, )W
But G4’ is simply dP1/aM;, Gi2’ is simply 8P /dH |, etc. Thus, we see that equations 50 and 51
can be rewritten as:
apP
L _CW {52)
at 1
il (53)
R A
In matrix form, considering just the flow and pressure equations, we have:
U
= - AUHUL+ B (54)
3R
) [ w 0
u=; Py, B=|0|,
l PzJ Lo
(55}
(kw2 -2
- L L
A=t _c, o 0
0 0
L +C‘\\ N
A typica!l implicit treatment would be:
+1
Un - Un = A(ul’l+l t) Ul‘l+ 1 (56)
At ' ’
Cften, to simplify, A is treated explicitly, i.e A — A (U" t). This yields:
(I - AtA)U"*E = gyn (57

to be solved for U"*! by matrix inversion.
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In this case, since A contains a major nonlinearity in flow (the term K|{W]|), it is best to
treat it more carefully.

Consider the fully implicit form of the flow equation of (54):

wl‘l.'i'l_wn AW A
= — _Ktwn+l|wn+l+__(pn+l_Pn+l)
At At L1 2

A A
= —K|W" + AW|(W" + AW) + E(P;'—P;)— -I:At(Ci+C2)W"+l

A
= _ KWW - 2K|W" AW +0(aW?) + = (7P

A n A - (58)
- EAt(("l+ Cz)w - ']:At(cl +L2JAW ;
Coilecting terms:
‘[1
i+2KWY At + A AC +C) AW
L 1 2 )
A A 1 (59)
- At[E(Pl-Pz)-K]W[w_mE W(cl+cz)l .

This is identical to equation 29 obtained from Porsching’s method.

Thus, to answer the question posed in the beginning: Yes, a formulation, which con-
tains the appropriate implicit treatrhent without the large overhead of Porsching's method,
does exist. That formulation is obtained via the rate forin of the equation of state. The
solution algorithm is now straight forward. All the needed partial derivatives are contained
in thé coefficients, Cy and Cq, and once coded, can be used for all thermodynamic phases,
fromn single phase subcooled liquid through to superheated steam, and for all the thermal-
hydraulic models, from the simple HEM ikrough to the six-equation model. Case dependent
system Jacobi's are not required. The system equations are of the simple form of 54 and the
user is free to choose from the existing spectrum of numerical schemes, depending on the
user’'s needs. The next section explores a few such schemes to test the importance of implicitly

modelling the nonlinear damping term K|W|.
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