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Input Format
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2-1

2.1 Introduction

TI,e input file to THSIM consists of a series of data records (each containing data fields like a database
record) grouped in blocks as indicated by the following headers:

*START
*NODE
*LINK
*PUMP
*HTC
*END

The blocks can be in any order but the data records within each block follow a specific format, as given in
the following s",ctions. Within each block, there is no specified format for the input fielcis other than integer,
float or string. The sequence of reccrds within each block must be maintained.
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Input Format

2.2 *START B!ock

2.2.1 Input Format

The • START block contains input data for overall program control as per the following format:

2-2

·START block

Re~ Fld FOrIilat Variable Description Units

I I float t start simulation start time seconds-

2 float t fill simulation finish time seconds-

I 3 float dt min minimum time stcp seconds

4 float dt max maximum time stcp seconds

1 2

S float dt-'print print time ,tep seconds

I iuteger max iter Maximum number of iterations for the pressure None
calculation in a node. ,

3 I float P tal Error tolCIance for pressure fraction I
I

2 float P scale 100% range scale for pressure error used in MPa I-
tolerance calculation

-
4 I float T tol Error tolerance for temperature fraction-

2 float T scale 100% range scale for temperature error used in °C-
tolerance calculation

S I float h tol Error tolerance for specific enthalpy fraction

I2 float h scale 100% range scale for density error used in tolerance kJ/kg
calculation I
Error tolerance for specific enthalpy6 I float rho tal fraction

2 float rho scal 100% range scale for density error used in tolerance kg/m'
e calculation

2.2.2 Example

• START
0.0 1.000102 .00001 .0 I .1 //t_start, t_fln, dt_min, dt_max, dt-'print
2S ,'/Maximum # of iterations
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Input Format

.001 10.0 Iffolerance (fraction] and scale for pressure [MPa]

.001 300.0 Iffolerance [fraction] and scale for temperature [deg C]

.001 1400.0 Iffolerance [fraction] and scale for specific enthalpy [kJlkg]

.001 1000.0 Iffolerance [fraction] and scale for density [MPa]
1.0 I/Adjustable parameter

2-3
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Input Format

2.3 *NODE Block

2.3.1 Input Format

The 'NODE block contains input data for the nodes DS per the following format:

2-4

*NODE block I
Rec Fld I'orm"t Variable Description Units

Name

I I integer 11I1111_11odes NU!llber ofnodes = number offollowing None
records (i = I to num Godes)

i I string nod~[i].name Node name (maximum of8 characters) None

2 string ncde[i].IYPc Type ofnod~: 'SID' for swndard node, None
'OTANK' for open tank (surface pressure held

I at input value and level calculation performed),
'CTANK' for closed tank (level calculation
performed)

3 float node[i].V Node '!olume (liquid volume if 'OTANK') m'

4 float node[i].P Node pressure (mid level pressure if a tank) MPa

5 float node[i].T Node temperature °C

6 float node[i].rho Node density kg/m'

7 float node[i].h Node specific enthalpy kJ/kg

8 float node[i].x Node quality fraction

9 string node[i].indvar Specification of independent variables for the None
node: 'P&T', 'rho&h', 'P&h', 'P&rho

10 tloat node[i]. OTANK volume if applicable, 0.0 otherwise m
V tank

11 float node[i].area Tank cross sectional area ifapplicable, 0.0 m'
(,Jierwise

12 float node[j]. OTANK surface pressure boundary condition if MPa
P_surface applicable, 0.0 otherwise

12 integer node[i].htcid ID number for the input record for the heat None
transfer coefficient correlation, 0 otherwise



Input Format 2-5

13 float node[i].heat Net fixed heat generation rate I surface heat IWatts I s
transfer rate, 0.0 otherwise

2.3.2 Example

*NODE
3
Node 1 SID 1.0 10.0 300.0 25.0 2900.0 0.0 rho&h 0.0 0.0 0.0 0.0
Node2 SID 1.0 10.0 300.0 25.0 2900.0 0.0 Iho&h 0.0 0.0 0.0 (1.0
Node3 SID 1.0 10.0 300.0 25.0 2900.0 0.0 rho&h 0.0 0.0 0.0 0.0

2.4 *LINK Block

2.4.1 input Format

The 'LiNK block contains input data for the links as per the following format:

~d
*LINKblock I

Fermat IVariable Description 1Units
Nam~

I I integer num_links Number oflinks = number of following NO:le
records (j = I to num_links)

-
j I string link(j].name Link name (maximum of 8 characters) None

2 string link[j].type Type 0 f1ink: 'sm' for standatd link None

3 string link[j].up node Name ofupstream node None

4 string link[j]. Name ofdownstream node None
down node

5 float link[j].A Link cross sectional area m'

6 float link[j].D Link hydraulic diameter m I
7 float link[j].L I Link length m

8 float link[j].k Link resistance coefficient

9 float link(j] .del elev Link elevation change (from inlet to outlet) m

10 float link[j].W Link flow kgIs

11 float link[j].up_level Upstream Tank connection level if applicable, m
0.0 otherwise
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Input Format 2-6

12 float link[j]. Downstream Tank connection level if m
down level applicable, 0.0 othetwise

13 integer link[j].pumpid ID number for the input record for the pump None
specification if applicable, 0 othetwise

14 integer link[j].valveid ID number for the input record for the vaive None
specificatiun if &Pp!icable, 0 othetwise

2.4.2 Example

'LINK
2
Link I STD Nodel Node2 0.10.01 10. 0.5 0.0 10.0 0.0 0.0 0 0
Link2 STD Node2 Node3 0.10.01 10. 0.5 0.0 10.0 n.o 0.0 0 0

2.5 *PUMPBlock

2.5.1 Input Format

The 'PUMP contains input data for the pumps referenced in the link input (field 1.3) as per the folkwing
format:

·'PUMP block
--

·Rec Fld Format Variable Description Units
Name

I i integer num-'pumps Number of pumps in the following records (k None
= I to nwn-'pumps)

k I integer pump[k].id Sequential ID number for the pump = record None
number. '>hould correspond to the ill number
used in field 13 of the link containing the
pump.

2 string pump[k].type Type of pump: 'STD' for standard link None

3 float pump[k].hJef head at reference flow metres

4 floal pump[k].<Lref reference volumetric flow m'/s

j5 float pump[k].a head/h ref=QI<Lref(l-aQ)b slm'

6 float pump[k].b None

2.5.2 Example
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·PUMP
I
I SID 200.0 100.0 0.0 0.0

2.6 *HTC Block

2.6.1 Input Format

2-7

The ·HTC contains input data for the heat transfer coefficient referenced j,., the node input (field 12) as per
the following format:

II
*HTC block

I Fld Format Variable IDescription UnitsRec
Name I

I I integer num_htcs Number ofheat transfer coefficie<lts in the None
following re<.;ords (m = I to num htcs) I

ill 1 integer htc[m].id Sequential ill number for the hte.. Should None
correspond to the ill number used in field 13
of the node containing the htc.

2 string htc[m].type Type ofhtc: None
•FIXED' for a constant htc
'DB' for standard Dittus Boelter correlation

3 float htc[m].h Fixed value ofh if 'FIXED' type is specified Watts/
or 0.0 otherwise m2 OK

4 float htc[m]. Unused

5 float htc[m]. unused

6 float htc[m]. unused

2.6.2 Example

·HTC
I
I FIXED 200.0

2.7 *END Block
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Input Format

2.7.1 Input format

2-8

This block header specifies the end of the input file. The user is free to place notes after this line if so
desired. There Me no input records associated with this block.

2.7.2 Example

-END
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2.8 Sample Input Files

2.8.1 Testl.inp

THSIM.C input file: To calculate properties of a node

pressure [MPa]
temperarure [deg C]
sped.hc enthalpy [kJ/kg]
de:1sity [MPal
flow [kg/s]

0.00001 1.0 10.0 //t start, t fin, dt_min, dt_max, dt_print
//Maximum # of iterations ­
//Tolerance [fraction] and scale for
//Tolerance [fraction] and scale for
//Tolerance [fraction] and scale for
//Tolerance [fraction] and scale for
//Tolerance [fraction] and scale for

//Adjustable parameter

10.0
300.0
1400.0
1000.U
100.0

• START
0.0 -1.0
25
.001
.001
.001
.001
.001
1.0

'NODE
3
Nodel STD 1.0 10.0 300.0 770.0 1200.0 0.0 rho&h 0.0 0.0 0.0 0 0.0
Node2 STD 1.0 10.0 300.0 700.0 1400.0 0.0 P&T 0.0 0.0 0.0 0 0.0
Node 3 STD 1.0 10.0 300.0 770.0 1500.0 0.0 E'&h 0.0 0.0 0.0 0 0.0

*END

2.8.2 Test2.inp

THSIM.C input file: To simulate a simple node-link case

10.0
300.0
1400.0
1000.0
100.0

'START
0.0 10.0
25
.001
.001
.001
.001
.001
1.0

0.00001 1.0 0.1 //t start, t fin, dt min,
//Maximum # of Iterations -
//Tolerance [fraction] a:1d scale for
//Tolerance [fraction] and scale for
//Tolerance [fraction] and scale for
//Tolerance [fraction] and scale for
//Tolerance [fraction] and scale for
//Adjustable parameter

pressure [MPa]
temperature [deg C]
specific enthalpy [kJ/kg]
density [MPa]
flow [kg/s]

'NODE
2
Nodel STD 1.0 10.0 300.0 500.0 1451.0 0.0 P&h 0.0 0.0 0.0 0 0.0
Node2 STD 1.0 5.0 300.0 100.0 1500.0 0.0 P&h 0.0 0.0 0.0 0 0.0

'LINK
1
Link1 STD Node1 Node2 0.01 0.1 1. 1.5 0.0 0.0 0.0 0.0 0 0

'END
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2.8.3 Test3.inp

THSIM.C input file: To simulate a simple node-link case

2-10

10.0
30C.0
1400.0
1000.0
100.0

-S1'ART
0.0 10.0
25
.001
.001
.001
.001
.001
1.0

.00001 1. 0.1 lit start, t fin, dt min,
IIMaximum # of iterations -
IITolerance [fraction) and scale for
//Tolerance [fraction) and scale for
IITolerance [fraction] and scale for
IITolerance [fraction] and scale for
IITolerance [fr.action} and scale for

IIAdjustable para~eter

pressure [MPaj
temperatur~ [de~ Cj
spEcific enthalpy [kc/kgj
density [MPaj
flow [kg/s]

-NODE
3
Nodel STD 1.0 10.0 300.C 500.0 1451. 0 0.0 P&h 0.0 0.0 0.0 0 0.0
Node2 STD 1.0 5.0 300.0 100.0 1500.0 0.0 I'&h 0.0 0.0 0.0 a 0.0
Node3 STD 1.0 3.0 300.0 100.0 1500.0 0.0 P&h 0.0 0.0 0.0 a 0.0

-LINK
2
Linkl S'l'lJ :<odel Node2 0.01 0.1 1. 1.5 0.0 0.0 0.0 0.0 a 0
Link2 STD Node2 Node3 O.Ol 0.1 1. 1.5 0.0 0.0 0.0 0.0 0 0

-END

2.8.4 Test4.inp

THSIM.C input file: To simulate a simple 2 interconnacted closed tank case

-START
0.0 lCO.OOOl 0.00001 1.0 10.0 lit start, t fin, dt_min, dt_max, dt_print
25 IIMaximum # of iterations
.001 lC.O IITolerance [fraction] and scale for pressure [MPa}
.001 300.0 IITolerance [fraction] and scale for temperature [deg Cj
.001 1400.0 IITolerance [fraction] and scale for specific enthalpy [kJ/kg]
.001 1000.0 IITolerance [fraction] and scale for density fkg/m'3}
.001 100.0 /ITolerance [fraction) and scale for flow [kg/s]
1.0 /IAdjustable parameter

-NODE
2
Node 1 OTANK 1.0 0.2 95.0 800.0 200.0 0.0 P&T 2.0 0.1 0.10 0 0.0
Node2 OTANK 0.1 0.2 95.0 800.0 200.0 0.0 P&T 2.0 0.1 0.10 0 0.0

-LINK
1
Linkl STD Nodel Node2 0.01 0.1 10.0 1.5 0.0 0.0 0.0 0.0 0 0

*END
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~e expressions for the F a functions can be summarl

ANALYTICAL INVESTIGATIONS

The analytical investigation is primarily concerned with incorporating the equation

of state within the describing matrix equation fur the system to albw the extraction of the

eigenvalues which characterize the system. First, we look at the distributed form of the

governing equations.

THE DISTRIBUTED FORM

From Equation 10:

) au au
- +A- =B
at az '

(10)

we derme an eigenvector, Xi. which satisfies

(A-A;OXi=O, i=l ..... N
(63)

where N = rank ofA.

Further, we define the modal matrix, M:

M = {Xl' X2' ·.. 1·
(64)

Thus

YI

AM = M . A where A = [ Y2 0 I.
o

(55)

Hence

M-I AM = A = Diagonal (66)

Multiplying Equation 10 thru by M -I we get:



au au 1M-1 - +M-1A- =M- B.
at az

Since M-IA = A M-l (from Equation 66) and ifwe define:

<I>=M-IU

C = M-l B,

we get the canonical form:

21

(67)

(68)

(69)
a<t> acI>
- +A- =C.
at az

This is a set ofN independent equations with solution

D.(t-.!y.)
<1>, =<1>;(0)e'l • (70)

where <1>;(0) and D; are determined form the initial and boundary conditions. Thus, the

eigenvalue, of Equation 69 are the velocity characteri'tics of the original equation set

(Equation 10). If the set of equations chosen is the basic set of mass, momentum and energy

equations (Equations 7-9), we find that

v p 0

A~[ovol,
o 0 v

which give the eigenvalues:

Ai = {v, v, v}.

Thus, the basic continuity equations capture the bulk movement of fluid only.

(71)

(72)

'For compressible flow. the classical way toO capture more information is to apply the

",,"uation ofstate,

P = n(p,s), where s = entropy,

to the energy continuity equation assuming isentropic flow, ds = (dQ!I') = 0, to give:

aP 2av aP
- + pc - +v - =0
at a. az

where c = speed of sound = v'(aPlap)•. This replaces the energy equation to give

(73)
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ap

0
azp p v 0

[VI+[VO IIp av
[ F/p I.- =az

P pc2 0 v 0ap-
az

The eigenvalues are now:

Ai = {v, v + c, v - c}

(74)

(75)

This form captures the bulk velocity and the acoustic wave propogation. However, we had to

assume isentropic now and the derivation is quite obtuse. A more direot method (ref: Hinds

1981) is te recast the aP/az term of the momentum equation. Since:

P = n(e, p)

and

(76)

then

ap
dP = - de +ae

ap
-dp

~~
(77)

ap=ap)ap+ap)ap .
az ae oz ap az

p ~

Substituting into the momentum equation, the A matrix becomes

v p 0

1 ap 1 ap
U = [ : IA= - - v - -

p ap p ap
e

0 0 v

whose eigenvalues are:

(78)

(79)

(80l

Again, this captures the bulk and acoustic velocities. This method is more straightforward

and intuiti V-C and correctly shows that the primary influence of the pressure on the system is

via the momentum equation.

[1 should be no surprise, then. that we arrive at the same conclusion by considering

the rate form as previously developed:

ap ap ae
-=G-+G­
dt I at 2 at

(8U
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2.8 Sample Input Files

2.8.1 Test1.inp

THSIM.C input file: To calculate properties of a node

pressure [MPa]
temperatu~e (deg Cj
specific enthalpy [kJ/kg]
density [MPa]
flow [kg/s]

0.00001 1.0 10.0 lit_start, t_fin, dt_min, dt_max, dt-print
//MaxL~urn * of iterations
//Tolerance [fraction) and scale for
//Tolerar.ce [fraction) and scale for
//Tolerance (fraction] and scale f0r
//Tolerar.ce [fraction] and scale for
//Tolerance [fraction] and scale for

//Adjustable parameter

10.0
300.0
1400.0
1000.0
100.0

'START
0.0 -1.0
25
.001
.001
.001
.001
.001
1.0

'NODE
3
Node1 STD 1.0 10.0 300.0 770.0 1200.0 0.0 rho&h 0.0 0.0 0.0 0 0.0
Node2 STD 1.0 10.0 300.0 700.0 1400.0 0.0 P&T 0.0 0.0 0.0 0 0.0
Node3 STD 1.0 10.0 300.0 770.0 1500.0 0.0 ?&h 0.0 0.0 0.0 0 0.0

'END

2.8.2 TesQ.inp

ThSIM.C inpat file: To simulate a simple node-link case

10.0
300.0
1400.0
1000.0
100.0

'START
0.0 10.0
25
.001
.001
.001
.001
.001
1.0

0.00001 1. 0 0.1 .Iit start, t fin, dt min,
//Maximum # of Iterations -
//Tolerance [fraction] and scale for
//Tolerance [fraction] and scale for
I/Tolerance [fraction] and scale for
//Tolerance [fraction] and scale for
//Tolerance (fraction) and scale for
//Adjustable parameter

pressure (MPa]
temperature [deg C]
specific enthalpy [kJ/kg]
density [MPaj
flow [kg/s)

'NODE
2
Nodel STD 1.0 10.0 300.0 500.0 14~1.0 0.0 P&h 0.0 0.0 0.0 0 0.0
Node2 STD 1.0 5.0 300.0 100.0 1500.0 0.0 P&h 0.0 0.0 0.0 0 0.0

'LINK
1
Linkl STD Nodel Node2 0.01 0.1 1. 1.5 0.0 0.0 0.0 0.0 0 0

'END
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[Note: the choice of e vs h is arbit,ary. as long as consistency is maintained and the G

funCtions appropriately redefinedl.

The full equation set is now:

p

v

e

p

The eigenvalues are:

where

ap

0 0
ax

rF:, Iv p

1 av-
0 v 0 axp =ae tQ/p0 0 \' 0 -

G2 Q/Pj
Gtv Gtp G

2
v 0

ax

l:
I.j={\"'J,v+~, v-~ }

G = (ap) =c2

1. afJ• e

(32)

(83)

Again. the bulk and acoustic velocities have been picked up. The advantage of the

r.-.te equation approach is that the effect of pressure is kept separate and the form permits the

explicit tracking of pressure on the same level as mass. momentum and energy. This WGl!ld

be of utility in transient fluid simulations where the choice of numerical time step could be

limited by pressure phenomena. Having the rate immediately available is an asset,

computationally. This will be discussed in detail later, but it is worth noting here because it

is expedient to have the system equations case in one form that captures the system essence

analytically and is the appropriate form for numerical computation. Eigenvalues can then be

calculated as a matter of course in the numerical simulation and used to help the numerical

simulation in a dynamic manner (selecting time steps. number of nodes, etc.) as well as an

intuition generator.

We move on to the lumped form of the equations Since this is of more interest to

system modelling.
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THE LUMPED FORM

To illustrate the rate form of the equation of state for lumped or network type

systems. consider a two node, one link system as per Figure 11. The continuity equations for

this simple system are:

(84)

Energy

J.fomentum

aH
2at = (H.jM'}W, forW < o.

(85)

I

or

In matrix form:

where

ilW A- = -(P -P -kjWIW)at L 1 2 •

aM. aH. a\l.
I I I

aP
j

F li at + F2i at + F3i at
-

at F4i My; + F5i Mu

aU
-.;=AU+B.

=0

(86)

(87)

(88)

(89)
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M
I

HI

~ P
'''~, I

u== W
M

2

H2

P2

The best specific form for the system matrix, A is not immediately obvious because the

gnverniog equations ace nonlinear. The particular linear form chosen will generate its own

set ofeigenvalues. The "best" linearization, then, is loosely defined as that set which captures

the major characteristics of the system in a robust and tractable manner.

Intuition and experience suggest that the flow is the major character in T/H systems.

Inspection of Equatio:ls 84-88 show" that flow, W, app~ar" expFcitly in the continuity

equations hod implicitly in the pressure equation.

Eliminating aM/at and aH/clt from the pressure equation giveS'

aP i • (G~ HI)
- == ±GI.W± -- W.at I M

I

Thus the equation set is:

· 0 0 0 -1 0 0 0MI MI
0 0 0 -H/M1 0 0 0

HI
G21 HI

HI

PI 0 0 0 -(GI\ + --) 0 0 0 PIMI
•

W == 0 0 AIL -KIWI 0 0 -AIL W

· 0 0 0 1 0 0 0M2 Mz
0 0 0 H/MI 0 0 0l.H2 G22 H I

H2

P2J
0 0 0 (G12 + --) 0 0 0 P2MI ~

The corresponding eigenvalues are:

(90)

(91)



Ai = (0.0.0.0.0

_K; ± jr(-K-2-w-t--~-(-G-'11-+-G-~-~-+-H-~-G--'l~;-1-+-A-~-~7~-)}
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(92)

Thus, the system will oscillate if the term under the square root sign is imaginary. The high

incidence of"zero .. roots and the "zero It co lumns suggests that sanle equations are superfluous.

[nspecti"ns shows that the mass and enthalpy equations could be dropped. This results in a

consid2rably reduced set:

=

o

AIL

o

o

-AIL

o

- [~
The eigenvalue. for this set are:

\ = 10 •

(93)

(94)

KW

2

Thus, the main system characteristics are picked up as before. This, of course, is the classic

spring-mass case, as can be seen by substituting the pressure equations into the momentum

equations to give:

lw A oW
- = - - (C + C ) W - KIWI - .
at: L 1 2 at

(95)

The conclusion that the flow and pressure equations are the key determinators of system

behaviour agress weli with the findings of Bond graph theory (Paynter 1960). The results

also indicate that the full Jacobi expansion ofPorsching (1971) is perhaps not necessary since

the mass and energy eq'lations affect the dynamics only through the state equation.
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A COMPARISON OFTHE RATE FORM OFTHE EQUATION OFSTATE

TOTHEJACOBlAN FORM

by

Wm. J. Garland

Department of Engir.eering Physics

McMaster Unive.siLy

Hamilton, Ontario

Canada LaS 4Ml

ABSTRACT

Porsching's soluticn algorithm for the simulation <:>fthermalhy"raulic systems is com·

pared to a new metho" based on the rate form of the equation of state. Both algol"ithms are

developed and discussed. A direct comparison is made for a simple 2 node-l link case to

illustrate and numerically test the ideas presented.

It is shown that the flnal algorithms of the two methods are identical and that the rate

method is more intuitive, easy to implement and permits eigenvalue extt·action. The

modelling of the nonlinear damping term was found to be important when large time steps

were. taken.

Presented at the 13th Symposium on Simulation of Reactor Dynamics and Plant Control, held

at Chalk River Nuclear Laboratories, Chalk RIver, Ontario, April 27-28, 1987.
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INTRODUCTION

One of the more successful algorithms for thermal hydraulic simulation is based on

the work of ?orsching (PO 69, 71). This algorithm, involving the Jacobi (or derivative of the

system state matrix), is used originally in FLASH-4 (PO 69 ), and subsequently SOPHT fCH

77 ). The strength of Porsching's app"oach lies in the recognition of flow as the most

iInportant dependent parameter and, hence, its fully implicit treatment of flow. This leads to

excellent numerically stability, consistency ant! converge. Further, the Jacobian permits a

generalized approach to the linearization of nonlinear systems. This allows thE development

of a system state matrix which contains all the system dynaInics in terms of the dEpendeat

parameters of mass, ellergy and flow. Back substitution finally gives a matrix rate equation

in terms of the system flow (the unknown) and the system derivatives. While this approach is

certainly a proven and successful one, it ha. some disadvantage,. First, as will be shown

later, the matrix rate equation to be solved is not in a characteristic or eigenvalue ferm.

Hence, it is not directly possible to extract the system eigenvalues and thus determine the

stability of a state without performing a costly time solution. Secondly, the matrix rate

equation involving the ,Jacobi is as complicated as it is general. The resulting expressions are

somewhat obtuse and it is difficult to obtain an intuitive feel for the system. This complexity

also hinders implementatinn in a simulation code and makes error tracking a tedious process.

Recently (GA86a, GAB6b, S085), work has been presented on the use of the rate form

of the equation of state. These works showed that by casting the equation of state in the form

cf a rate equation rather than the norrr.al algebraic form, the system state mBtrix, can be

more logically formed of the normal conservation rate equations for mass, energy and

momentum plus the pressure rate equation. This forms the four cornerstone equations in

thermalhydraulic systems analysis (Figure 1). It was found (GA86a) that the mass and

energy equations did not contribute to the eigenvalues of the system for the simple cases

studied. This agrees with the intuitive analogy of springs and masses. Further, numerical

implementation prove to be very successful, leading to roughly a factor of 10 improvement
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over the algebraic form of the equation of state, largely due to the iterative nature of the

algebraic form. Incorporating the implicit pressure C:ependency in the numerical method also

drastically improved the numerical stability.

Since Porsching's method also carried the pressure dependency implicitly (via the

Jacobi), the question arises as to how the Rate Form compares to Porsching's method

Specifically, is the pressure treatment of the two methods different? If .0, what are the

advantages and disadvantages of each? How do the two comparz in terms ~f robustness, ease

of implement;) tion, clarity. stability. etc?

To investigate these questions, the following two section. are devoted to concise but

explanatory derivations ofPorsching's method and the Rate Form. Subsequ~ntly,a numerical

test is performed on a simple system to i!lustrate the similarities end differences.

DER1VATlON OF PORSCHING'S FORM

Following Porsching (P07l), the thermalhydraulic system equations can be written

in node-link form (see Fig'.lre 2):

Momentum:

•
Wk = fk (t, Pi. Pj. Wk) ;

Enthalpy:

• H H
H.= ') -.:!...W ') ....::.Wv+ Q;

I M v M
yET. v vEl. v

I I

(2)

Mass:

(3)

where

W = mass flow rate;

P = pressure;



M =mass;

H '" totai enthalpy;

f =some function;

Q =heat source;

t = time;

To = terminati.ng node for link k;

Ii '" initiating node for link k;

subscripts;

ij = node indices;

k = link index;

v = summation index;

super~cript

• = a/at

These equations can be written in matrix form:

•
Y = F(t,y),

where y is the column vector:

4

(4)

Wk

HI

y = (5)

HN

MI
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for the case of K links and N nodes.

An implicit solution is sought for its stability advantages over explicit methods. First,

we expand F via the Taylor series:

F(tn+I,yn+l) = F(tn .yn) + t.t [ aF(t, y) I + aF (t, y)I dy] + O(at2)
at r. dy n at

(6)

where the superscript, n, denotes some reference at iteration nand n +1 denotes the time of

iteration n+l. The time difference at is simply tn+l_tn. It i.s assumed that F contains no

expHc;t lirr.e dependence (i.e. terms such as at2 or bt, where a and b are constants). Rather,

the time dependency in F is through the implicit dependence of mass, energy and flow on

time. That is:

F(t,y) '* F (y(t)) .

Thus, in equation 6,

(7)

the implicit form for equation 4 is'

0+1 ny -y

at
(8\

Substituting in the expansion ofequation 6:

where the Jacobi is:

ilf
1

ilf
1

1dyl Oy2

ilf2 ilf
2

J = - -
Oyl Oy2

L
Rearranging equation 9:

or

(9)

(10)

(111
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(2)

or

U31

Equations 12 and 13 are the general forms for the implicit method. Note that the function, F,

is general. It is only requir~d that it be differentiable. In practice. it is required that F be

smooth so that there are no discontinuities in J. Discolltin"ities tend to play havoc 0:1 the

numerical stability of simulations. For this reason, the steam tables employed in the

simulation must have continu·ous derivatives (see also GA 86el.

The Jacobi, J, is of size K + 2N by K + 2N. F~r practical simulations (50 or more

nodesl, this gives rather large matrices to invert. To red'.!ce the cost of inversion, Porsching

utilized the fact that flow is the major parameter and eliminated M"+I and 11"+1 from the

Il'.atrix equati~n12 (or 13) by bac!<£ubstitutinr, lea,·ing a matrix equation implicit in W, but

not in M and H. To illustrate, consider a two node, one link case (figure 3). The governing

equations are:

Mass:

aMI
-=-W
at

Energy:

aH
l- = -(HfM)W

at I I

=W.

aH
2- = (H fM)W forW>O,

at 1 1

(14)

(15)

Momentum·

aH2- =(H/M)Wat 2'
for\\'< 0 .

aw
at

(16)

Slate:

where V = volume.

(17)
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1+2AtKIWI
A aPI A aP2 A aPI

-- -At - -fl.t - -ll.t
L aH I L aH

2
L aMI

~~

W HIW
HIlMI fl.t 1+-At 0 - --fl.t

MI M2
I

W HjW
-Hr'Mjll.t --[).t 1 --fl.t

Mj M2
1l(.,~, 0 0 1

(- Ull.t 0 0 0

and F is:

o

(20:

o

o

1

~ (P 1-P2)-KIWIW

(21)

-W

+w
for the case where W > O. Since the same arguments apply for the case where W < 0, further

discussion wili confine itself to the case where W > o.

Multiply through in equation 13, using equations 20 and 21. noting that:

rfl.Wjl

fl.H j

fl.y = fl.H2
(22)

fl.M j

fl.M
2

we find:
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(23al

(23bl

AWHI AH
1

AtH:WM'!l
- --At-W-- At +t.H2 + =

MI MI Mi

and

AW At +M'!2 = WAl.

Thus, from equations 23d and 23e:

(23cl

(23dl

(23el

(24al

AM2 =(W + AWl At

At HI WIMI-AtAWH/MI+ At HI WAM/AM;
--

I +W/M
I

tot

HI
= -At -(W + AWl after simplification.

M
I

and

HI
AH2 = At-(W+AWl.

M
I

Note that mass &n<! enthalpy":'i:onserved.

(UbI

(24cl

(24dl

./

We note also that the expressions for AM and AH are similar to what you wOl•.id

obtain by the straightforward application of implicit forward differer.cing of the orginal

equations 14 and 15, i.e:
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l Mn+I_Mn ~+l_M;I I = _Wn+ 1 +Wn+ 1
" , ~

"'t "'t
,

~~

(25)
-~\~/1 Hn+I_Hn Hn+ 1 Hn+I_Hn Hn+ 1

1 1 = __I_Wn+1 2 1 _1_ Wn+1=
Lit Mn+ 1 "'t Mn+ 1

1 1

The only difference between equations 24 and 25 is the treatment of the HIlMI factor,

To arrive at 24c and d, the mass equatio"s (24a and b) were used and indeed, implicit treat-

ment of M and H was used, The result (24a to d) appears explicit in M and H when compared

to equation 25. Thi~ doe$ not mean that the Jacobi form leads to a semi-implicit method

(implicit in flow, explicit in mass and enthalpy). It means that the implicit contributions

cancel out.. (Note, however, it can be shown that for the genere.! case, Porsching's method is

fully implicit in its treatment of the mass equation but not fer the enthalpy equation.) Thus

we conclude that there is littl~ merit in carryine the rr.ass and enthalpy equations in implicit

form. This agrees with eaI1ier observations (GA 86a) that the eigenvalues of a thermal-

hydraulic system are associated with the flow and pressure equations, not with the mass and

energy equations.

To fini~h off the derivatiol1 of Porsching's approach, we use equations 24a to d In

equation 23a to give:

="'t{ A (P _p )-K!WIW-M A w[ HI (aP I + ap~)+( aPI + aP2 )1'1 (26)
L 1 2 ' L MI aHI aH

2
aMI aM

2

Setting:

and

we have

HI aPI aPI
C =---+­

I MI aH I aMI
(27)

(28)
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(29'

Of course, the general case of N nodes and K links Ylould follow the same substitution route

with greatiy increased complexity (see P07l). It is not evident from Porsching's general

expressions that the resulting flow equations (equation 26 fo. the simple case of:2 nodes and 1

link) are more dependent on pressure and its derivatives (with respect to mass and energy)

than it is on the mass and the enthalpy themselves. This observation, once pointed out. is

obvious and undeniable. Yet, no existing thermalhydraulic code for system simulation takes

full advantage of this observation.

Does a formulation which contains the appropriate implicit treatment withont the

large overhead of tne general perturbation 2.pproach Qf Porsching's method? A clue exists in

equation 17:
\
! P = n(M,H, V) • (17)

This can bE: rewritten:

ap aP ap
dP =- dM + - dH + - dV.aM aH av

(30)

The form of equation 30 suggests that equation (26) contains some version of the total

pressure derivative. Indeed we shall see in the next section that the rate form of the equation

of state yields the same expression as Porsching's method, without the large overhead.

----'''-...------------------
DEHIV)s ON OFTHE RATE FORM OFTHE EQUATION OF STATE (fromGA86a)

tion ofpressure from known values ofother thermodynz.mic properties

anc! iteration is required because the independent (known)

unfortunately, T and P are rarely the

independent parameters in system dynamics since

parameters are temperature, T. and p

equations yield mass and energy as a function of time. Hen

J~-14
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varying functions of pressure provided good curveThe F functions are smooth, slo

v - v
g r

(46)
dhr 1 I dv dVr I- (v -vrl- x-

g
+(l-x)- (h -hrl

g dP dP g

=

fits are used. The latest steam tables (HA84) 'Ne~ to fit saturated properties to less than

1/4% accuracy' using low order polynomials and eXPorl".n~s (GA86cl. Considerable effort

was spent on obtaining accuracy and continuous derivativeso~e full pressure range. The

fact that good fits are "'lailable means that the F functions are well b 'led which in turn

makes the rate form of the equation of stat.e extremely well behaved, as shown ~~ TheG

functions r.re also well behaved for the same reasons.

In general, the equation ofstate can be written'in rate form for all situations (GA86a).

\lie adopt the general form:

dP

dt =

dM
F­

I dt

dH dV dTv dT)
+F -+F -+M F -+M F

2 dt 3 dt v 6 dt ) 7 dt

MvF. + N'1 Fs

dp dh
=G - +G -

1 dt 2 dt

dT
v

+G
3 dt

dT l
+G ­

4 dt

(471

lhe expressions for t.he F and G functions are summarized as in GA86a. These expressions

cover the full range from subcooled liquid to superheated steam.

Thus, in addition to the system conservation equations 14 to 16, we have two pressure

rate equations:

(48)

(49)
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Substituting in equations 48 and 49 for dM/dt and dH/dt we have:

. (50)

(5IlaP2 (, ,HI)- = + G2i +G2i - W
~ M

I

But Gil' is simply aPI/aMI, GI2' is simply aPI/aHlo etc. Thus, we see that equations 50 and 51

can be rewritten as:

ap,
-' ~ -c W
~ I

In matrix form, considering just the flow and pressure equations. we have:

aU
- = A(l!, t) U(t) + 8
at

(52)

(53)

(54)

(55)

+c",
2

A typical implicit treatment would be:

As

-KIWI

-c. I

A

L

o

o

Often, to simplify, A is treated explicitly, i.e A ..... A (Un,t). This yields:

(I - MA) Un+ 1 = un

to be solved for Un+ 1 by matrix inversion.

(56)

(57)
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In this case, since A contains a major nonlinearity in flow (the term KIWI>, it is best to

treat it more carefully.

ConsidH the fully implicit form of the flow equation of (54):

)

Collecting terms:

[
A A'=~t L (PI-P2)-KlW\W-~tL W(C I +C2)j·

This is identical to equation 29 obtained from Porsching's method.

(58)

(59)

)

Thus, to answer the question posed in the beginning: Yes, a formulation, which con-

tains the appropriate implicit treatment without the large overhead of Porsching's method,

does exist. That formulation is obtained via the rate form of the equation of state. The

solution algorithm is now straight forward. All the needed partial derivatives are contained

in the coefficients, C 1 and C2, and once coded, can be used for all thermodynamic phases,

from single phase subcooled liquid through to s~perheated steam, and for a 11 the therm'll-

hydraulic models, from the simple HEM ,!:rough to the six-equation model. Case dc!,endent

system Jacobi's are not required. The system equations are of the simple form of 54 and the

user is free to choose from the existing spectrum of numerical schemes, depending on the

user's needs. The next section explores a few such schemes to test the importance of implicitly

modelling the nonlinear damping term KIWI.
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